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Introduction 

This paper aims to further investigate the relationship of various environmental, mobility and 

socioeconomic parameters with house prices in the area of Boston through spatial-econometric tools and 

techniques. More specifically, the suggested model specification sheds light on the appropriate model and 

functional form of the parameters as to better determine the determinants of the Hedonic Price Function of 

houses with subsequent goal to enhance the existing literature. This research question was chosen as 

enhance the on-going research around modelling house prices and the implicit markets that determine the 

demand and supply of houses and their various attributes with a spatial focus, as well as to address some of 

the inhibitors that implicate the accuracy of such models. In this paper it was found that alongside 

conventional socioeconomic parameters, various environmental, geographical and mobility related factors 

were found to contribute substantially on median house prices in the Metropolitan area of Boston. Finally, 

it was found that spatial dependencies are present within the specified model that implies potential 

reconsideration of the model. 

Existing literature has indicated that one of the most prominent approaches that aid in the analysis and 

assessment of Quality of Life is that of measuring both the individual and bundled contribution of various 

attributes and amenities, that are often non-marketable, of which an asset comprised of (Rosen, 1974). More 

specifically the above approach can take the form of market/residence approach which essentially measures 

individual preferences through market behavior and is known as hedonic strategy and is most often 

illustrated through the Hedonic Price Model (HPM) (Montero & Fernandez-Aviles, 2014). 

The complexity of the above hedonic strategy is increased when attention is paid to spatial dependencies. 

Nevertheless, taking spatial dependencies into consideration is of great significance according to Tobler’s 

first law of geography where everything is related to everything, but neighboring or adjacent entities and 

assets are even more related than others that are distant (Tobler, 2016). 



 The above intuition’s validity in the case of hedonic strategies has been thoroughly researched, especially 

in the context of modelling house prices. More specifically, literature indicates that the omission of spatial 

parameters that potentially exhibit spatial effects and dependencies among a model’s variables may lead to 

estimators being inconsistent, inefficient, and inaccurate regardless of the sophistication of the used method. 

(Anselin, 1988). 

 

Economic Framework  

Hedonic Price Model 
 

Prior to describing our model specification that aims to address the above mentioned research question it is 

important to establish the economic framework on which this paper builds upon. The main economic 

framework our model will try to further develop is the Hedonic Price Model and more specifically its spatial 

variation the Spatial House Pricing Model. The HPM methodology is most often used in calculating and 

assessing the contribution of the individual attributes of which a heterogeneous asset is comprised of to the 

asset’s bundled value. Moreover, under specific assumptions of perfect information and competition, this 

methodology’s ability to estimate the implicit prices of characteristics or assets that are considered non-

market goods has been proven extremely useful when it comes to assessing the economic value of 

heterogeneous goods such as houses (Montero & Fernandez-Aviles, 2014). 

In our case additional value is generated through HPM methodology due to the flexibility it offers as there 

are no specific requirements when formulating the functional relation between the individual attributes of 

a house and its price. This enables researchers to experiment freely while simultaneously producing 

noteworthy results.  

In this paper we aim to formulate a specification of the hedonic price function that accurately and efficiently 

captures median house price as well as illustrates potential spatial dependencies. 



Dataset Description & Variable Selection 
 

The data from which we will be evaluating and interpreting the results of our research question are obtained 

from the cross-sectional dataset named Boston House Prices Dataset with file name “Boston corrected” 

which contains 506 census tracts in the Boston Standard Metropolitan Area in the 1970’s. The dataset 

contains cross-sectional data of 14 variables that are of structural, environmental, mobility/neighborhood 

and geographical nature. Nevertheless, the suggested model specification will only be containing 12 of 

them due to the inconsistency and uncertainty of the contribution of the two excluded variables. More 

specifically, our model will be comprised of CMEDV the median house prices, CRIM, ZN, INDUS, CHAS, 

NOX, RM, DIS, RAD, TAX, PTRATIO and LSTAT as seen in Table 1 (Table 1). 

 

 

 

 

 

 

 

 

 

 

 



Table 1 - Variable Selection 

Variables used in model specifications 

 Functional form Definition 

Dependent   

CMEDV LogCMEDV Median price for owner-occupied houses 

(in 1000$) 

   

Independent   

ZN ZN Proportion of residential land zoned for 

lots over 25,000 sq.ft. 

INDUS INDUS Proportion of non-retail acres per town 

CHAS CHAS Charles River dummy variable (=1 if tract 

bounds the Charles River, =0 if else) 

NOX NOX2 Nitrogen Oxides concentration (parts per 

10 million) 

RM RM2 Average number of rooms per owner-

occupied house 

DIS LogDIS Weighted mean of distances to five 

Boston employment centers 

RAD LogRAD Index of accessibility to radial highways 

TAX TAX Full-value property-tax rate per 10,000$ 

PTRATIO PTRATIO Pupil-Teacher ratio by town 

LSTAT LSTAT Lower status of population (in percentage 

%) 

B B Black proportion of population 

 

 

 

 

 



Variable Selection 
 

In this paper’s suggested specification, the included variables will be the independent variable CMEDV, 

and the dependent variables DIS, RAD, CHAS, INDUS, NOX, ZN, RM, TAX, PTRATIO, LSTAT, CRIM, 

B whose descriptive statistics can be seen below (Table 2). 

Table 2 - Descriptive Statistics of Selected Variables 

Variable Obs Mean Std. Dev. 

logCMEDV 506 1.317892 .1773115 

ZN 506 11.36364 23.32245 

INDUS 506 11.13678 6.860353 

CHAS 506 0.06917 0.253994 

NOX
2
 506 0.3210877 0.1392125 

RM
2
 506 39.98932 9.079531 

LogDIS 506 0.5159559 0.2343221 

LogRAD 506 0.8111149 0.3799353 

TAX 506 408.2372 168.5371 

PTRATIO 506 18.45553 2.164946 

LSTAT 506 12.65306 7.141062 

B 506 356.674 91.29486 

 



Econometric Analysis 

This section of the dissertation is comprised of (i) the investigation of the model specification (ii) benefits 

and implications arising from this specification, (iii) analysis and interpretation of results and finally (iv) 

the investigation of the existence of spatial correlations and dependencies.  

OLS Regression Model 
 

The suggested model or housing price equation is constructed through OLS multiple linear regression 

methodology. Moreover, some of the abovementioned variables may need to be transformed as to 

contribute for a better fit of our model. Prior to the transformation a Shapiro-Wilks (Table 3) test was 

conducted to evaluate the normality of the above specified variables. This test indicated that all variables 

were not normally distributed and needed potential transformation. Nevertheless, it can be observed from 

the comparison of the two OLS models (Table 3) that the model was subject to a slight increase of the R 

squared when the variables CMEDV, DIS, RAD, NOX and RM were transformed into logCMEDV, 

logDIS, logRAD, NOX2 and RM2 (equation 1).  

Table 3- Shapiro-Wilks test for Normality 

Variable Obs W V Z Prob>z 

CMEDV 506 0.91979 27.274 7.951 0.00000 

ZN 506 0.87065 43.981 9.100 0.00000 

INDUS 506 0.91690 28.255 8.036 0.00000 

CHAS 506 0.94891 17.373 6.866 0.00000 

NOX 506 0.94352 19.206 7.108 0.00000 

RM 506 0.96087 13.305 6.225 0.00000 

DIS 506 0.90366 32.757 8.392 0.00000 

RAD 506 0.72197 94.537 10.941 0.00000 



TAX 506 0.84029 54.307 9.608 0.00000 

PTRATIO 506 0.92629 25.064 7.748 0.00000 

LSTAT 506 0.93691 21.451 7.374 0.00000 

B 506 0.50336 168.871 12.336 0.00000 

 

OLS	specification:	

01234=56+57∗9:3;<+5=∗>:+5?∗0@A<+5B∗:CD+5E∗F1+5G∗39<+5H∗FA3+5I∗JAD+5K

∗LJFAJ9C+576∗M<JAJ+577∗N+O	(equation	1) 

 

Before interpreting the coefficients and the contribution of each variable to the median house price 

(CMEDV) it is of great significance to take into consideration both the benefits of the chosen methodology 

and specification as well as their limitations. The selection of OLS multiple linear regression model as the 

appropriate methodology can be derived by addressing whether Gauss Markov’s assumptions of OLS hold 

for our data (Hallin, 2006). However, the OLS specification has its limitations in terms of addressing 

misspecifications, endogeneity, normality of variables and omitted variable bias, some of which could 

potentially be addresses by the box-cox transformation (Osborne, 2010). 

UVW01234=56+57∗9:3;<+5=∗>:+5?∗0@A<+5B∗:CD=+5E∗F1= 

Spatial Regression Models 
 

In this sub-section of our model’s econometric analysis, we will be investigating the hypothesis that spatial 

dependencies are existent withing our model. Intuitively due to the nature neighborhood, geographic, 

accessibility and environmental nature of various specified variables some spatial correlations are expected 

to be present. 



 In order to verify the presence of spatial correlations two spatial regression models will be used, the spatial 

lag model that considers dependence in the explanatory variable CMEDV of a spatial unit, a house in our 

case, and its corresponding neighboring units (equation 2). The second model is the spatial error model that 

takes into considerations the spatial dependence in the error term of a house and its corresponding 

neighboring houses (equation 3). Additionally, Moran’s I will be initially calculated as to measure the 

spatial autocorrelation of our model according to the given Spatial Weights Matrix (Saputro, 2019). While 

negative values will indicate that neighboring houses’ attributes will have increasingly dissimilar values 

compared to ones further away (Anselin, 2002).  

XYZ[\Z]	]Z^	_`ab]:		c = e ∗fc + h ∗ i + j			(bklZ[\`m	2)	

XYZ[\Z]	boo`o	_`ab]:		c = h ∗ i + l, qℎbob	l = s ∗fl + j		(bklZ[\`m	3)	

	

Results 

OLS regression 
 

From the figures below that have been produced through the OLS regression of the specified model 

evaluation and interpretation of the variables’ contribution to the median house price can be conducted 

(Table 4). It can be observed that all coefficients are highly statistically significant at 99% confidence 

level except for ZN whose coefficient is statistically significant at 90% confidence level and INDUS that 

is statistically significant. More specifically, an increase of 1 unit of INDUS does not contribute towards 

the CMEDV, an increase of 1 unit of ZN will increase CMEDV by 0.03044% , an increase of 1 unit of 

CHAS will increase logCMEDV by 5.12% , an increase of 1 unit of NOX2 will decrease logCMEDV by 

27.2%, an increase of 1 unit of RM2 will increase logCMEDV by 0.37% , an increase of 1% of logDIS 

will decrease logCMEDV by 0.19%, an increase of 1% of logRAD will increase logCMEDV by 0.069%, 

an increase of TAX by 1 unit will decrease log CMEDV by 0.03%, an increase of PTRATIO by 1 unit 

will decrease logCMEDV by 1.43%, an increase of LSTAT by 1 unit will decrease logCMEDV by 1.36, 



an increase of 1 unit of B will increase logCMEDV by 0.021% and finally the constant has a fixed 

contribution f o1.744 towards logCMEDV(Table 4). From the above it can be deduced that most the 

variables in our specification model contribute towards the median house price and can be considered 

some of its determinants. As to reinforce the validity of the above specification, studies such as that of 

Rubinfeld & Harrison have found similar evidence with slight variations in their variable selection 

(Harrison & Rubinfeld , 1978).  

 

Table 4 - OLS and Spatial Model Regression Results 

Variable OLS equation Spatial Lag 
Model 

Spatial Error 
Model 

Dependent 

Variable 

LogCMEDV LogCMEDV LogCMEDV 

Independent 

Variables 

Coefficients 

ZN .0003044* 
(.0001717) 

.0002729 
(.0001742) 

.0002667 
(.0001737) 

INDUS .0011767 
(.0007954) 

.0008583 
(.0007809) 

.0009797 
(.0007862) 

CHAS .0512394*** 
(.0164679) 

.0544948*** 
(.0166714) 

.05418*** 
(.0167937) 

NOX2 -.2718397*** 
(.058646) 

-.2731919*** 
(0575579) 

-.2735144*** 
(.057893) 

LSTAT -.0136794*** 
(.0014347) 

-.0135065*** 
(.0013962) 

-.0136238*** 
(.001408) 

B .000209*** 
(.0000667) 

.0002357*** 
(.0000648) 

.0002283*** 
(.0000656) 

LogDIS -.1858507*** 
(.0409457) 

-.104989** 
(.0516451) 

-.1300561*** 
(.0488374) 

LogRAD .0685649*** 
(.0162577) 

.0618996*** 
(.0158965) 

.0642389*** 
(.015957) 

TAX -.0002582*** 
(.0000432) 

-.0002577*** 
(.0000419) 

-.0002601*** 
(.0000423) 

RM2 .0036929*** 
(.0007973) 

.0035822*** 
(.0007947) 

.0036356*** 
(.0007951) 

PTRATIO -.0143149*** 
(.0016806) 

-.0135728*** 
(.0016635) 

-.0139402*** 
(.0016687) 

Constant 1.744348*** 1.693834*** 1.712053*** 



(.0832228) (.0841658) (.083818) 
 Additional Statistics 

Rho - .0001777*** 
(.0000603) 

- 

Lambda - - .0000878** 
(.0000434) 

R2 0.7786 0.782 0.773 
Log Likelihood - 542.65379 540.87601 
Note: *p<0.1; **p<0.05; ***p<0.01 and the values in the parentheses are Robust 

Standard Errors 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Spatial Regression Models 
 

Through calculating Global Moran’s I in STATA for each of the specified variables the results were positive 

and highly statistically significant, alongside with their positive z-scores (Table 5). Meaning that the null 

hypothesis of the test that each investigated variable is randomly distributed among the spatial units or 

houses in Boston is rejected and that the spatial distribution of both the high and low values are spatially 

clustered (Kondo, 2021). Thus, spatial dependencies are present and spatial regressions are appropriate to 

be conducted (Lee, 2017).  

Table 5- Global Moran's I 

Variables Global Moran’s I 

logCMEDV 1.1e+12*** 
(51.962) 

ZN 6.9e+11*** 
(32.183) 

INDUS 1.5e+12*** 
(71.502) 

CHAS 3.7e+11*** 
(17.191) 

NOX2 1.6e+12*** 
(74.957) 

RM2 5.1e+11*** 
(24.049) 

LogDIS 2.0e+12*** 
(95.171) 

LogRAD 1.3e+12*** 
(61.058) 

TAX 1.6e+12*** 
(76.267) 

PTRATIO 5.7e+11*** 
(26.571) 

LSTAT 1.2e+12*** 
(56.670) 

B 6.7e+11*** 
(31.372) 

Note: *p<0.1; **p<0.05; ***p<0.01 and the values in the parentheses are z-scores 
 

From conducting a spatial lag model on the same variables as in the previous OLS econometric 

specifications a positive and highly statistically significant rho value of 0.0001777 was derived (Table 4). 



Additionally, all the variables’ coefficients are highly statistically significant at 99% confidence level 

besides LogDIS that is statistically significant at 95% confidence level and ZN and INDUS that are 

statistically insignificant similarly to the OLS model. The positive rho value indicates the rejection of the 

null hypothesis that there is no spatial correlation and subsequently that high prices of houses can be 

observed among neighboring houses and similarly for lower price houses. Furthermore, a value of rho other 

than zero also implies that OLS is biased, and inconsistent, thus spatial regression models are more 

appropriate to address this research question (Yamagata & Seya, 2020). Finally, from conducting a spatial 

error model of the chosen specification a lambda value of 0.0000878 was produced that is statistically 

significant at 95% confidence level. Similarly, all of the predictors were highly statistically significant at 

99% confidence level except for ZN and INDUS that are statistically insignificant in all three regression 

models that have been formulated (Table 4). The positive lambda value verifies the presence of spatial 

correlation between the errors and implies that OLS is unbiased and consistent however its standard errors 

and coefficients are inefficient (Dubin, 1992). 

 

Conclusion 

Overall, from the abovementioned findings it has become evident that the usage of model methodologies 

and the construction of a model specification to estimate the Hedonic Price Function of houses is extremely 

complex and sophisticated, due to phenomena such as Multicollinearity, Endogeneity, Heteroskedasticity, 

model misspecification, omitted variable bias and the presence of spatial dependencies. Nevertheless, 

through this research paper light was shed on some of the above and issues by conducting substantial 

econometric analysis of both the OLS specifications as well as through two Spatial Regression Models. 

Moreover, this paper contributed significantly to assessing various model’s appropriateness that aimed to 

accurately evaluate the contribution of various socioeconomic, structural, and environmental house 

attributes towards the median house price. More specifically, it was found that while the OLS estimation is 



much simpler and easy to interpret it was biased and didn’t accurately reflect the contributions to the median 

house prices due to the presence of spatial correlation. Consequently, it can be deduced that Spatial 

Regression Models can pose potentially a better fit to address the research question by accurately 

decomposing one of the main determinants of growth and quality of life, Real Estate, and house prices into 

various heterogeneous attributes that have unobserved economic value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 

STATA commands 

 

OLS models 

● Step 1: general model 

Line 1: reg CMEDV INDUS ZN CHAS NOX RM DIS RAD TAX PTRATIO LSTAT B 

● Step 2: hettest option after step 1 that performs various versions of the Breusch-Pagan (1979) 

and Cook-Weisberg (1983) tests to measure linear heteroskedasticity. 

Line 1: Line 1: reg CMEDV INDUS ZN CHAS NOX RM DIS RAD TAX PTRATIO LSTAT B 

Line 2: hettest 

● Step 3: general model with robust option to address heteroskedasticity: 

Line 3: reg CMEDV INDUS ZN CHAS NOX RM DIS RAD TAX PTRATIO LSTAT B, robust 

● Step 4: specification model:  

Line 4: reg logCMEDV INDUS ZN CHAS NOX2 RM2 LOGDIS LOGRAD TAX PTRATIO LSTAT B 

● Step 5: hettest option after step 4 that performs various versions of the Breusch-Pagan (1979) 

and Cook-Weisberg (1983) tests to measure linear heteroskedasticity. 

Line 4: reg logCMEDV INDUS ZN CHAS NOX2 RM2 LOGDIS LOGRAD TAX PTRATIO LSTAT B 

Line 5: hettest 

 

 



● Step 6: specification model with robust option to address heteroskedasticity: 

Line 6: reg logCMEDV INDUS ZN CHAS NOX2 RM2 LOGDIS LOGRAD TAX PTRATIO LSTAT B, 

robust 

● Step 7: vif command after step 6 as to calculate the variance inflation factors for the 

independent variables as to address multicollinearity 

Line 6: reg logCMEDV INDUS ZN CHAS NOX2 RM2 LOGDIS LOGRAD TAX PTRATIO LSTAT B, 

robust 

Line 7: vif 

 

 

Spatial Regression Models: 

 

● Step 1: import Spatial Weights Matrix after being normalised manually on excel 

Line 9: spatwmat using "C:\normalised_wmatrix_stata.dta", name(aweights) 

● Step 2: calculate Global Moran’s I to find potential autocorrelation or spatial dependency of 

variables 

Line 10: spatgsa logCMEDV ZN INDUS CHAS NOX2 RM2 LOGDIS LOGRAD TAX PTRATIO LSTAT B, 

weights(aweights) moran 

● Step 3: perform a spatial lag model 

Line 10: spatreg logCMEDV ZN INDUS CHAS NOX2 RM2 LOGDIS LOGRAD TAX PTRATIO LSTAT B, 

weights(aweights) eigenval(aweights) model(lag)  



● Step 3: use robust option after step 3 to address heteroskedasticity 

Line 11: spatreg logCMEDV ZN INDUS CHAS NOX2 RM2 LOGDIS LOGRAD TAX PTRATIO LSTAT B, 

weights(aweights) eigenval(aweights) model(lag) robust 

● Step 4: perform a spatial error model 

Line 12: spatreg logCMEDV ZN INDUS CHAS NOX2 RM2 LOGDIS LOGRAD TAX PTRATIO LSTAT B, 

weights(aweights) eigenval(aweights) model(error) 

● Step 5: se robust option after step 4 to address heteroskedasticity 

Line 13: spatreg logCMEDV ZN INDUS CHAS NOX2 RM2 LOGDIS LOGRAD TAX PTRATIO LSTAT B, 

weights(aweights) eigenval(aweights) model(error) robust 

 

 



Stata Output 
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